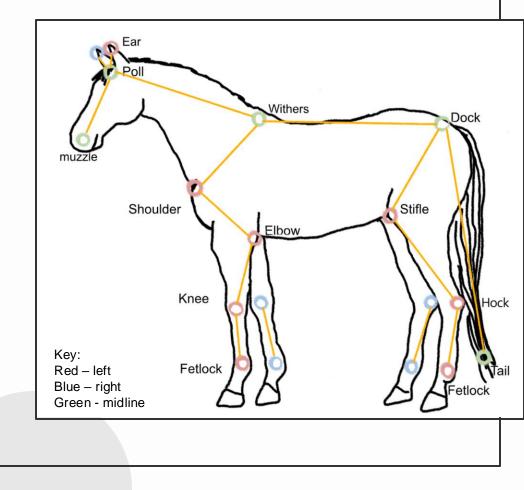

Automatic Behavioural Monitoring in Thoroughbred horses through Pose Estimation

Jasmine Poon BVSc4 Working with Dr. Lazslo Talas at University of Bristol

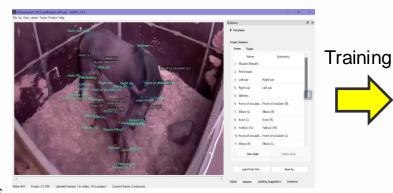
Table of contents

RESEARCH FOCUS: To establish what behaviours we can automatically detect in horses using video monitoring and automatic pose estimation


Objective: to map a horse using data points and use this to infer the behaviours observed in the video

Method: Deep learning for pose estimation – Mapping the horse Identifying horse behaviours from data points – Coding with Python Validation with observable behaviours in labelled video – BORIS Reflection on AI accuracy and application in current and future time

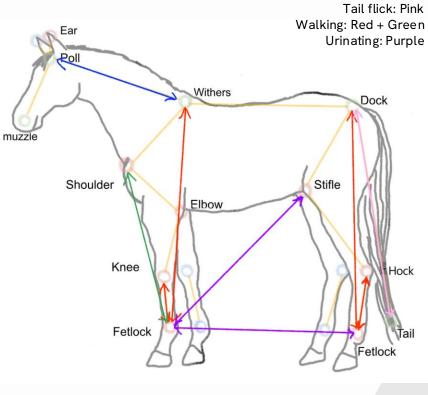
What is Pose Estimation?


Identifying and predicting the positions and orientation of objects.

Involves identifying key points and mapping their spatial relationship to reconstruct the posture of an object

- Label the horse(s) in each video frame using points from the pose estimation slide
- 2. Run training through all the labelled frames
- 3. SLEAP produces it's predictions of the points of the horse in new frames
- 4. Adjust and correct SLEAP's predictions
- 5. Re-train the model (SLEAP 'learns' from your corrections on it's predictions)
- 6. SLEAP produces new predictions after training
- 7. Continue loop of correcting new predictions and training the model
- 8. Once happy with the accuracy of predictions, predict the whole video and export a .csv file containing the data (points of the horse and their coordinates) of the predictions

Training and inference loop



Ethogram (how to convert behaviours into calculations of data points)

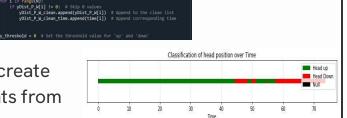
Key: Standing/lying: Red Head up/down: Blue Tail flick: Pink Walking: Red + Green

<u>Standing up</u>	Leg comparably extended. Longer wither/dock to fetlock distance compared to fixed knee/hock to fetlock distance
<u>Lying down</u>	Leg comparably flexed. Shorter wither/dock to fetlock distance compared to fixed knee/hock to fetlock distance
<u>Head up</u>	Poll above withers (y-axis – poll y value greater than withers)
<u>Head down</u>	Poll below withers (y-axis)
<u>Tail flick</u>	Rapid changes in distance between dock and tail
<u>Walking</u>	Changes not only in leg flexion but also fetlock position in relation to shoulders/stifle (x-axis)
<u>Urinating</u>	Distance between front fetlock and stifle compared to distance between front and hind fetlock

Results from SLEAP

Example of what a frame from a predicted video looks like (As shown, SLEAP creates a 'skeleton' that we define from the points of the horses)

Analysis


Python

Using Spyder, a python coding software and publicly available coding packages numpy and pandas to automatically run through calculations of data points

fl/m_ ிங

Creating graphs

Using the same coding environment, I am able to create graphs of behaviours against time using data points from **SLEAP**

Current media name Horse getting up from lying down.mp4 (#1/1)

No focal subject

Observed behavior

Nerse Neat Store STAR

fedia position: 0.000 2.771 frame: 0 Play rate: x1.000 Zoom level: 1.0

fate-over1 Lping-down

Dist P W = np.empty(N) i in range(N): f array_P_x[i] == 0:

> i in range(N elif array W v[i] == 0

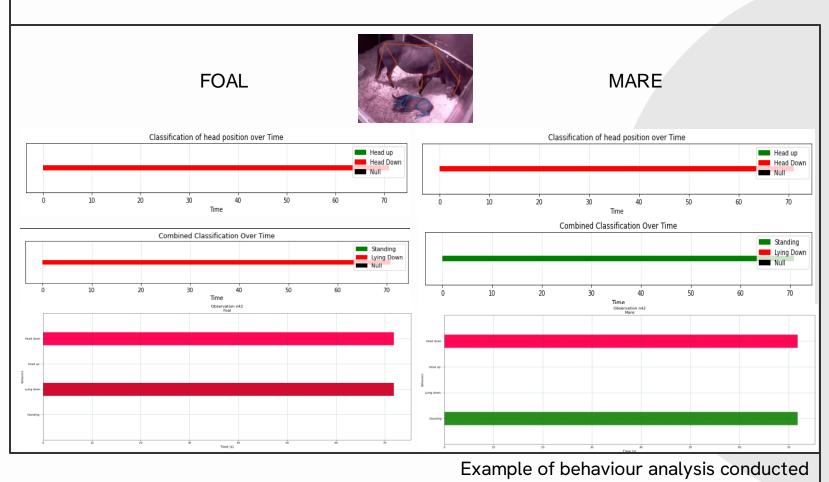
elif array_W_x[i] == 0: xDist_P_W[i] = 0

f array P v[i] == 0 yDist P W[i] = 0

vDist_P_W_clean = [] vDist P W clean time = []

or i in range(N)

yDist_P_W[i] = 0


xDist_P_W[i] = np.abs(array_P_x[i] - array_W_x[i])

yDist P W[i] = array P y[i] - array W y[i]

yDist_P_W[i] = array_P_y[i] - array_W_y[i]

BORIS

A software that allows manual labelling of behaviours occuring during a video and converts it into a graph against time

Top two graphs: from Python and SLEAP data, Bottom graph from BORIS by observing video

Challenges

Labelling in SLEAP

Ideas to make it more user friendly, improving labelling efficiency

Working in different computers

Limitations in multiple people working on the same project due to video file path.

Better Pose Estimation

Eliminating background and allowing single horse tracking using programmed video editing loop? More data points?

Skeleton vs Silhouette

Is pose estimation and training Al to detect a horse's skeleton the better way?

Next steps

1. Improving user interface for labelling

We are writing our own Python package tailored specifically to label horses

2. More data

Monitoring horses at Langford using low-cost open-source cameras

3. Increasing ethogram complexity

Adding more detailed behaviours (e.g. signs of stress) and describing them mathematically

Literature review

- Pereira, TD, et al. (2022). SLEAP: A deep learning system for multi-animal pose tracking. *Nature Methods*, **19**, 486-495.
- Friard, O, & Gamba, M. (2016). BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. *Methods in Ecology & Evolution*, 7(11), 1325–1330.